Reliable sensory processing in mouse visual cortex through inhibitory interactions between Somatostatin and Parvalbumin interneurons
نویسندگان
چکیده
Cortical neurons often respond to identical sensory stimuli with large variability. However, under certain conditions, the same neurons can also respond highly reliably. The circuit mechanisms that contribute to this modulation, and their influence on behavior remains unknown. Here we used novel double transgenic mice, dual-wavelength calcium imaging and temporally selective optical perturbation to identify an inhibitory neural circuit in visual cortex that can modulate the reliability of pyramidal neurons to naturalistic visual stimuli. Our results, supported by computational models, suggest that somatostatin interneurons (SST-INs) increase pyramidal neuron reliability by suppressing parvalbumin interneurons (PV-INs) via the inhibitory SSTàPV circuit. Using a novel movie classification task, we further show that, by reducing variability, activating SST-INs can improve the ability of mice to discriminate between ambiguous stimuli. Together, these findings reveal a novel role of the SSTàPV circuit in modulating the fidelity of neural coding critical for visual perception. peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/187062 doi: bioRxiv preprint first posted online Sep. 11, 2017;
منابع مشابه
Inhibition by Somatostatin Interneurons in Olfactory Cortex
Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform ...
متن کاملBehavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex
Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locom...
متن کاملA Computational Analysis of the Function of Three Inhibitory Cell Types in Contextual Visual Processing
Most cortical inhibitory cell types exclusively express one of three genes, parvalbumin, somatostatin and 5HT3a. We conjecture that these three inhibitory neuron types possess distinct roles in visual contextual processing based on two observations. First, they have distinctive synaptic sources and targets over different spatial extents and from different areas. Second, the visual responses of ...
متن کاملSimulating inputs of parvalbumin inhibitory interneurons onto excitatory pyramidal cells in piriform cortex
The balance of excitation and inhibition within most sensory cortices is co-tuned to a given stimulus. However, unlike other sensory cortices, it has been reported from in vivo recordings that widespread global inhibition governs sparse stimulus-evoked excitation in the piriform cortex. Further in vitro physiology has demonstrated that this global inhibition is achieved through local activation...
متن کامل3D clustering of GABAergic neurons enhances inhibitory actions on excitatory neurons in the mouse visual cortex.
Neocortical neurons with similar functional properties assemble into spatially coherent circuits, but it remains unclear how inhibitory interneurons are organized. We applied in vivo two-photon functional Ca(2+) imaging and whole-cell recording of synaptic currents to record visual responses of cortical neurons and analyzed their spatial arrangements. GABAergic interneurons were clustered in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017